Contents

Introduction

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Macronutrients</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Micronutrients</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>Overall Health</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>Overall Athletic Performance</td>
<td>34</td>
</tr>
<tr>
<td>5</td>
<td>Sports Nutrition For Body Transformations</td>
<td>44</td>
</tr>
<tr>
<td>6</td>
<td>Supplementation</td>
<td>46</td>
</tr>
<tr>
<td>7</td>
<td>Meal Templates</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Closing Thoughts</td>
<td>65</td>
</tr>
</tbody>
</table>
About The Author

Hey!

In this book you’re going to discover everything you need to know about sports nutrition and how honing in on this topic can drastically improve not only your athletic performance, but also your body composition.

So who am I?

My name’s Joshua Serrano and my story is very different from most peoples.

I started my journey in the fitness and nutrition realm at an early age. It started with one simple gift from my grandfather that sparked an interest in me that literally shaped my life into EXACTLY what I wanted it to become.

It was my very first set of weights. These pieces of iron taught me everything I needed to know about discipline, consistency, and commitment.

Fitness quickly became my obsession.

I trained hard every day and studied even harder.

At 12 years old, I devoured and applied any information that came my way.

But, with no guidance, I was forced to do things the old school way... Trial and error.

I didn’t have a coach to help me along the way. Most of the time it was just me, a book, a YouTube video, and my set of weights.

At 14 I had a vision.

After I spent all my time learning and absorbing health and fitness information from YouTube and various blogs, I knew that I wanted to become a strength coach.

I had everything planned out; I was going to go to college (first one in my family) for exercise science, obtain my CSCS after graduation, open my own warehouse gym where I would train...
athletes from all walks of life, and run my own fitness blog in order to expand the amount of people I could help.

I had a plan and an unbreakable amount of faith that I was going to live my life the way I dreamt it.

Well, fast forward 6 years and I was at a fork in the road.

After high school I went to community college and studied exercise science. I spent 2 years learning even more of what I loved.

But when it came time to decide which 4 year university I wanted to transfer to, I was conflicted.

There was something I hadn’t considered.

I had a gut feeling that a 4 year university wasn’t for me.

I had spent the last 9 years of my life learning and applying every piece of fitness and nutrition information I could get my hands on.

Community college was very simple for me given the fact that I had already taught myself most of the material years before.

I felt like English, math, and history weren’t as important as the subject I was so passionate about.

Luckily the semester before graduation from community college, I made it my goal to learn how to build a website. I told myself that by the end of summer I was going to have my first blog up and running.

That’s when Serrano Strength was born.

This was the blog that I envisioned when I was 14.

I spent months on YouTube learning how to start a website, build a website, and expand my reach so I could help as many people as possible.

So, when the time finally came to choose what school I wanted to transfer to, I had two on my list; Rutgers University and Temple University...

But Serrano Strength was on that list too.

It was a scary time in my life.

I could go to school, take classes that didn’t interest me, and put myself into debt...
OR

I could do exactly what I envisioned at 14 and start writing for my own blog.

I mean, the website was all done, all I needed to do was start writing for it.

I knew that if I went to school, I wouldn’t have the time to actually start writing.

After talking to some close family and friends and doing some deep soul searching, I decided that I was going to drop out of college and do what I knew in my heart was best...

Start writing for Serrano Strength.

All my life I’ve been self-taught; from learning how to ride a bike and roller skates, to teaching myself about health and fitness, to teaching myself how to create a website and become a blogger.

So even though this was one of the scariest decisions I had to make, I knew deep down that I would be okay.

I was disciplined enough to get through the tough times and the hardships.

2015 was a crazy year for me, and one that I will always cherish.

This was the year my life completely changed.

Chris Barnard, the founder and head Strength Coach of Overtime Athletes contacted me one evening and asked me the most important question I’ve ever been asked:

“Do you want to come down to Strength Camp to intern and see where it might lead?”

My heart told me that this was something I needed to do.

Something that would provide me with endless opportunity.

It would be out of my comfort zone, being thousands of miles away from home

But

I said “hell yeah!”

Within 2 weeks I packed up and made the long journey to St. Petersburg, FL.

It’s crazy that in the blink of an eye someone’s life can change.

Never be afraid to take risks.
That’s one of the most important lessons I’ve learned in my short life. And one that I hope to instill in you as we build our relationship.

Being an athlete, especially one with a goal of becoming elite, means you’ll be at a cross roads multiple times in your life.

Always take that leap of faith.

Otherwise you’ll always look back and think what could have been.

Intro To Power Nutrition

You’ve probably heard the old saying, “if you add shitty fuel to your Ferrari don’t expect it to go very far.”

This holds true, not just in the sense of a real Ferrari, but also your body.

If you treat your body as a Ferrari and fuel it the proper way, your body’s performance will stun you.

If you eat a well-balanced diet and properly re-fuel every night, the performance you’ll have every training session, practice, and game will be dramatically improved.

An intelligent nutrition plan should do three things:

First, it should provide adequate energy to fuel you.

The energy demands of an athlete are quite different than the energy demands of the Average Joe.

Athletes require higher quality and quantity fuel.

Second, it should provide enough nutrition to assist in recovery and cellular processes.

It is known that inadequate nutrition can lower testosterone and growth hormone production.

This means less muscle building/recovery and lower energy levels.

Couple that drop in anabolic hormones with a lack of necessary nutrients to repair the body, and you have a formula for disaster.

Third, it should provide a balance of nutrients to promote overall health and well-being.
A diet void of micronutrients (vitamins and minerals) is not only unhealthy, but it will hurt your performance on the field.

For example, an imbalance of sodium, potassium, and magnesium will result in cramping and muscle spasms.

No one runs well when their calf muscles are cramping into knots.

If you are serious about being an athlete and performing at a high level, you will make the effort to focus on your nutrition the same way that you focus on your physical training.

After all, what good is it to crush yourself in the weight room if you’re not going to eat enough to build bigger, stronger, more explosive muscles?

Too often, the discussion of nutrition becomes overly complicated and confusing.

“Experts” will often use big terms and talk about theory rather than application in an effort to flex their intellectual muscles and sound intelligent.

This is completely unnecessary and helps no one.

Nutrition doesn’t have to be advanced chemistry, you just need to understand the basic principles.

The “trick” to nutrition is finding what works best for you, and then finding a way to implement it into your daily life.

Consistency is King.

Now dig deep into this book and discover exactly what you need to know in order to fuel your body and outperform the rest of the competition.
Chapter 1: Macronutrients

What Are Macronutrients

Before we get into the content that’s going to directly impact your performance on and off the field, we need to have a basic understanding of nutrition.

That’s where macronutrients come into play.

So what exactly are these nutrients?

Macronutrients, also known as MACROS, are the 3 main sources of energy your body is able to consume and utilize.

1. Protein
2. Carbohydrates
3. Fats

These three substances are required by the human body if we want to survive. Neglecting a certain macronutrient can impact your body in different ways, i.e. eating low carb will negatively affect your muscle building potential since insulin secretion will be at an all-time low.

Or eating low fat can have negative effects on your hormone production and cognitive health.

Whenever you eat something, whether it be rice, beans, meat, fruit, or veggies you are consuming macronutrients.

So let’s start breaking down each one of these substances.
Protein

A substance widely discussed in the fitness industry, but one that is so misunderstood.

So What Exactly Is Protein?

Now, we can keep it simple and say that protein is the building block of muscle, it helps rebuild tissue and other chemicals in your body, but there’s no fun in learning stuff you already know.

So let’s take it a step further and really discuss what protein is and what your body does with it.

Protein is chemically constructed from amino acids, which are organic compounds made up of carbon, nitrogen, oxygen, and sulfur.

These amino acids are the building blocks of protein, and proteins are the building blocks of tissue (muscle).

There are 20 total amino acids known to man, and 9 of them are essential:

- Histidine
- Isoleucine
- Leucine
- Lysine
- Methionine
- Phenylalanine
- Threonine
- Tryptophan
- Valine

Meaning, our bodies don’t naturally produce these 9 amino acids, so we must get them through our diet by eating foods that fall under the “complete protein” category, i.e. meats, fish, dairy products, eggs, etc.
How Does The Body Absorb Protein?

This is a question that’s not asked or answered very often. But I believe it’s important to understand how protein is handled by the body.

When you eat protein, let’s say a nice juicy steak, your body can’t actually use that protein to repair your tissue.

Protein molecules are too large to be absorbed.

So What Does The Body Do?

The first step in breaking down protein begins in the stomach.

Once your body recognizes that you just ingested protein it starts to secrete an enzyme called pepsin.

This enzyme breaks the bonds that hold protein molecules together, called peptide bonds.

When these bonds start to break down, you start getting amino acids linked together which are called, polypeptides.

After your stomach finishes breaking down as much protein as possible using pepsin, it starts to move the polypeptides into the small intestine for further breakdown.

Once in the small intestine, the pancreas releases more enzymes called trypsin, chymotrypsin, and carboxypeptidase which go to work on breaking down the rest of the polypeptides into smaller units of amino acids.

So far, the protein has been broken down, then the amino acids from that protein have formed polypeptide bonds, and those polypeptides have been broken down into amino acids.

From there your small intestine absorbs the free amino acids into the bloodstream, which sends them out to your whole body to be absorbed by whatever needs to be repaired.

In your case, this is your muscle tissue.
What Are The Best Types Of Protein Sources?

To be completely honest with you, animal protein.

Why?

For 2 good reasons.

1. According to Jay R. Hoffman and Michael J. Falvo, proteins from animal sources (i.e. eggs, milk, meat, fish, and poultry) provide the highest quality protein rating of food sources. This is primarily due to the ‘completeness’ (having all 9 essential amino acids) of proteins from these sources.

2. Animal protein comes with saturated fat and cholesterol, two very important molecules necessary for your body to run at an optimal level. (You never talk about cholesterol in the whole book!)

Now that’s not to say you can’t be a vegetarian or vegan athlete, because they exist.

But they were top level athletes and had an expert tell them exactly what to eat in order for them to consume the right amount of protein (in grams) with the complete amino acid profile every single day.

Unless you’re able to hire an expert or spend 100’s of hours studying how to truly get all the nutrients the human body need through plants, then I suggest sticking with animal based proteins.

This is helpful because instead of having to eat nine different plants to get the Notorious 9, you only have to consume an egg, a steak, or even just a scoop of protein powder.

How Much Protein Should I Eat?

There’s a lot of misinformation out there regarding this topic.

And most of the confusion stems from the bodybuilding days when bodybuilding magazines were recommending 300+ grams of protein a day.

I remember once I tried eating 316 grams of protein.

That was a digestive nightmare.
Nevertheless, throughout the years I’ve learned and experimented with different amounts of protein consumption.

Here’s what I’ve learned:

We don’t actually need these crazy amounts of protein that bodybuilding magazines have been recommending all these years.

Eating at about .8-1g/per pound of LBM (lean body mass) is enough to maintain muscle mass.

And if gaining mass is the objective, then going as high as 1.25-1.5g/per pound of LBM is going to deliver much better results.

This is super important as an athlete since you’re constantly tearing your body down through weight training and practices.

But you see, everyone is different, and depending on your goal, bodyweight, body fat, and activity level, your protein requirements will be different.

One thing is for certain, 20-40g of protein is enough to activate protein synthesis, an important step in muscular repair.

As long as you understand these two things, finding your protein intake shouldn’t be that hard.

Experiment and see what works for you.

Carbohydrates

It’s a well-known fact that carbohydrates provide us with energy for our daily activities.

And as an athlete, your carbohydrate requirements are way different than the average person.

You need to consume enough carbs every day to replenish your body with enough glucose to support ATP production when it’s needed.

And boy do athletes need a lot of ATP.

I’ll go more into ATP production later on in the book but for now, know this, without ATP your body wouldn’t be able to function. The body needs ATP just to do the body’s maintenance work that we have no control over; i.e. breathing, heartbeat, digestion, etc.

So when you factor in weight training, practices, games, school, and stresses of life in general, you need to make sure you’re consuming enough carbohydrates to replenish your
glucose/glycogen stores so that you have energy to engage in these activities and so you can recover from them.

If you’re not getting an adequate amount of carbs in your diet, you’re doing a huge disservice to your performance and ultimately your athletic career.

So now that you understand the importance of eating enough carbohydrates in your diet, let’s find out what exactly carbs are and how your body deals with them.

When you think of carbs your first thought is probably bread, pasta, rice, or cookies.

Foods that are starchy and sweet.

But when you take a deeper look into the organic compounds we call carbohydrates, we find that there are actually 3 different forms.

- Monosaccharides
- Disaccharides
- Polysaccharides

Monosaccharides

This form of carbohydrate is the simplest.

Every other type of carb has to be broken down into a monosaccharide in order to be absorbed by the body, so you can rest assured that monosaccharides are the most important for athletic performance.

What Exactly Are Monosaccharides?

When we break down the word we get;

\[
\text{Mono} = \text{one} \quad \text{and} \quad \text{Saccharide} = \text{sugar}
\]

One sugar.

No wonder it’s known as the simplest form.
Power Athlete Nutrition

3 common types of monosaccharides are;

- Glucose
- Fructose
- Galactose

With Glucose being the most important because of its ability to fuel our cells.

This is the main reason athletes NEED glucose in their diet.

The cells in your body run most efficiently on glucose, especially muscle cells.

Because they are so simple, your cells will absorb the glucose from your bloodstream, send it into the mitochondria, and start producing ATP, the energy source cells use for daily functions.

So it’s not exactly glucose that’s producing the energy. It’s the ATP that cells produce from glucose.

It’s crazy how the body works.

Unlike proteins, which start breaking down in the stomach, carbohydrates start breaking down in the mouth using salivary amylase, found in your saliva; then they stop breaking down in the stomach, and restart the breakdown process in the duodenum (the first section of the small intestine).

Because the simplest form of carbohydrate is glucose, I try to make the majority of my carb intake come from glucose.

It’ll be easier on my digestive system to not breakdown other forms of carbs (disaccharides and polysaccharides).

If your body can only absorb monosaccharides make the majority of your food intake monosaccharides?

*Side Note: I believe in a well-balanced diet so making ALL of your carbs monosaccharides is probably not the best idea. I tend to make 70-80% of my carbs come from monosaccharides. The other 20-30% can come from complex carbs (disaccharides and polysaccharides).

That way your body can absorb it quicker and start producing ATP for your performance.

Some of the best carb sources I include in my own diet are:
Carbs are the number 1 source of energy you need to worry about.

Yes, protein and fats do matter but without adequate carbs in your diet, you’re leaving out the most anabolic hormone in your body.

Insulin

Insulin is the storage hormone. Its job is to shuttle all the nutrients you eat (protein, carbs, and fats) into your cells.

Without it, your body doesn’t recover as efficiently as it should.

Disaccharides

Another form of carbohydrates is disaccharides.

These are substances that contain only two molecules of sugar.

\[Di = \text{two} \quad \text{and} \quad \text{Saccharides} = \text{sugar} \]
And can be found in foods like:

- Table sugar
- Molasses
- Milk
- Ice cream

The most common forms of disaccharides are; sucrose, lactose, and maltose.

And like I mentioned earlier, your body can only use these forms when your body breaks them down further into monosaccharides.

Polysaccharides

This form of carbohydrate is simply labeled as **starch**.

They consist of many monosaccharides that are bonded together forming a hard digesting molecule that takes time to breakdown.

One common form of polysaccharide that we consume is cellulose.

Cellulose is typically found in fruits, vegetables, and grains.

This type of carb is crucial if we want to have a healthy digestive system.

You see, our bodies don’t possess the enzyme that helps break cellulose down.

So we use cellulose as fiber, an imperative part of a healthy diet.

Fiber supports the body in moving food through the digestive tract.

And according to Dr. Mercola, a well-respected doctor in the field of nutrition, fiber can help:

- **Blood sugar control**: Soluble fiber may help to slow your body's breakdown of carbohydrates and the absorption of sugar, helping with blood sugar control.

- **Heart health**: An inverse association has been found between fiber intake and heart attack, and research shows that those eating a high-fiber diet have a 40 percent lower risk of heart disease.
Stroke: Researchers have found that for every seven-grams more fiber you consume on a daily basis, your stroke risk is decreased by 7 percent.

Weight loss and weight management: Fiber supplements have been shown to enhance weight loss among obese people, most likely because fiber increases feelings of fullness.

Skin health: Fiber, particularly psyllium husk, may help move yeast and fungus out of your body, preventing them from being excreted through your skin where they could trigger acne or rashes.4 What is psyllium husk

Diverticulitis: Dietary fiber (especially insoluble) may reduce your risk of diverticulitis – an inflammation of polyps in your intestine – by 40 percent.5 What does diverticulitis do, what are polyps?

Hemorrhoids: A high-fiber diet may lower your risk of hemorrhoids.

Irritable bowel syndrome (IBS): Fiber may provide some relief from IBS.

Gallstones and kidney stones: A high-fiber diet may reduce the risk of gallstones and kidney stones, likely because of its ability to help regulate blood sugar.

When Should I Eat Carbs?

This is a very important question because most people tend to have chronic elevations of insulin throughout the day.

This can lead to Type 2 Diabetes.

Instead of having our insulin elevated all day, we want our insulin to elevate at the most important times of the day.

Very specific times.

Insulin is the storage hormone.

Like I mentioned above, its job is to shuttle all the nutrients you eat (protein, carbs, and fats) into your cells.

So when do you think your body would most benefit from nutrients being sent into your cells for repair?

After intense training.
The best time for you to have a high carb meal is right after an intense training session.

Now this can be after training in the weight room or after practices/games.

This ensures that you’re getting amino acids delivered into your muscle cells AND refilling your glycogen stores.

An important aspect of sports nutrition.

Keeping your glycogen stores filled serves as insurance that your body has enough glucose to produce ATP when it’s needed.

If you want to be an Overtime Athlete, make sure nutrition is just as important to you as training in the weight room and working on your craft is.

Now, on to the last macronutrient.

Fats

Fats get a bad rep.

Plain and simple.

In today’s day and age we are seeing the aftermath of three decades of bad propaganda directed towards dietary fats.

There were many commercials and ads that spoke out against dietary fats and deemed them the main cause of the number one killer in the United States, heart disease.

It was around the 1980’s when all of this “fat is bad” nonsense started.

Unfortunately, this idea caught fire, and it was widely accepted that staying away from dietary fat was the best way to a healthier body.

In 1992 the U.S. government even came out with its own nutritional guidelines called the “Food Pyramid.”

They recommended the majority of your food intake come from grains (bread, cereal, rice and pasta).

Fat intake was all the way at the top, with the smallest recommended amount.

This misguided information has led to generations of people becoming weaker and sicker.
Now before we get into the meat and potatoes of this chapter I want to remind you that if you believe fat to be evil, I challenge you to read this chapter with an open mind.

I’m not here to change your mind, but rather share my perspective on why I find fat to be a very valuable nutrient that humans absolutely need in their diet.

So first, let's define dietary fat.

It is true. Not all fats are the same. Some can help us and others can truly cause havoc to our system.

When we talk about fat in this chapter we will be referencing natural fats, not the processed hydrogenated vegetable fats that are found the majority of the processed foods we buy.

Whole foods like meats, dairy products, seeds, nuts, avocado, and certain oils are the healthiest fats, and will be what we are discussing in this chapter.

So What Exactly Is Fat?

The most common example of fat is of a lipid.

A lipid is a fat-like molecule that does not have the ability to dissolve in water.

This makes fat very difficult to digest.

Because fat is so difficult to digest, it takes a very different route through your digestive tract.

You see, fats tend to clump up together and form large droplets as they move through your system.

By the time they reach your small intestine, they haven’t been digested at all.

But once they reach the small intestine, the only way for the fat molecules to breakdown is by the secretion of bile.

This green liquid is produced by the liver and stored in the gallbladder.

The bile contains salts, which act as an emulsifier (a substance that stabilizes an emulsion*) to lipids, allowing them to be broken down into small droplets of fat.

*An emulsion is a mixture in which the substances combined are not soluble with each other. The substances will not mix or stay mixed with each other without the help of an emulsifier.
These small droplets have more surface area, which aid in digestion.

The reason is because the fat digesting enzyme, pancreatic lipase, can only act on the surface of the fat droplets.

When pancreatic lipase acts on the lipid, it breaks it down, which results in free fatty acids and monoglycerides, the two digestive products of lipids.

Once your body is done breaking down the fats into free fatty acids and monoglycerides, the absorption phase takes place through the mucosal lining* of the small intestines and is taken right into the epithelial cells (cells that line the intestines).

*A membrane that lines various cavities in the body and surrounds internal organs.

Once inside the epithelial cells, the free fatty acids and monoglycerides enter the endoplasmic reticulum, whose function is to synthesize (combine) and transport lipids.

Here the digested product (fatty acids and monoglycerides?) resynthesizes into triglycerides, the major form of fat stored in the body.

After this occurs, the triglycerides are coated with proteins, which results in the formation of chylomicrons.

The coating of proteins gives the triglycerides a water-soluble coat, and this allows the chylomicron to travel outside the epithelial cell.

Once the chylomicrons leave the epithelial cells, they enter the lymphatic capillaries.

This is a unique step in the digestion of fats.

They must pass through the lymphatic system before they make their way back to the bloodstream where they will be used to:

- Build cell membranes
- Make myelin sheaths that coat your nerves,
- Become the precursor of testosterone,
- And much more.

There are so many important processes in your body that require lipids.

This is why we have become weak and sick, from a lack of healthy fats.
We have stayed away from the number one nutrient that is responsible for keeping our brains and central nervous systems healthy.

How Do Dietary Fats Help With Sports Performance?

Now I know this is the big question everyone has been asking themselves throughout this chapter.

And if you’ve been paying attention you’ve probably already figured it out.

Fat plays a big role in the health and balance of your physiology.

And as an athlete you need to make sure your physiology is in check.

What Exactly Is Physiology?

Physiology is the mechanical, physical, and biochemical functions of the human body.

Dietary fats play a crucial role in keeping your physiology balanced.

With optimal physiology you’ll be able to recover faster from your training and get more out of each workout compared to someone who doesn’t focus on internal health.

So, to wrap up, if there were 2 things that I wanted you to take from this chapter, they would be:

1. Fat is responsible for keeping your brain and nerves running efficiently. This is super important as an athlete, especially for you young ones. The more efficient your brain is at sending signals to your muscles, the better performance you’ll have.

2. Fat is the precursor for a majority of the hormones your body produces. If you’re not eating quality fats in your diet you’re not producing hormones like; mineralcorticoids, glucocorticoids, androgens, estrogens, progestagens and Vitamin D.

As you can tell, I’m a firm believer in making sure you’re getting an adequate amount of fat in your diet.

Without it, I can guarantee you won’t be performing at the level you could be.

Now, even though I’m talking highly of dietary fats, it’s important to note that just like anything else, you can overdo it with the fat intake.
Unlike protein and carbs, fat provides 9 calories per gram, making it more calorically dense.

What you don’t want to do is start adding a stick of butter to your coffee or having bacon with every meal.

Moderation fellas.

Cholesterol

We can’t talk about dietary fats without mentioning cholesterol.

This simple molecule has made thousands of people afraid of it, and if you ask anyone about cholesterol, their advice would probably be to stay away from it.

Unfortunately, this “harmless” advice can make or break your health.

You see, cholesterol is found all over the body like in your nerve sheaths, the white matter of the brain, the adrenal gland and especially in cell membranes.

So why on earth would they tell us to avoid cholesterol?

Yes our bodies do produce about 2g of cholesterol everyday but according to Nore T. Gedgaudas, despite this ability to manufacture cholesterol, it is, in fact, critical to obtain cholesterol from dietary sources.

The reason for this is because the process our bodies go through to manufacture cholesterol is inefficient. Going through a “30 step, complex biochemical process” to make cholesterol when you can just get it from eating animal fats seems backwards to me.

Eating cholesterol through animal based fats can actually supply your body with enough cholesterol to do its normal functions and start doing other jobs like producing higher amounts of necessary hormones that can only be manufactured with cholesterol.

So you might be asking; won’t all this saturated fat and cholesterol lead to high cholesterol in the blood?

The simple answer is NO.

But the more complex answer is that your body actually produces its own cholesterol in abundance through the production of a liver enzyme called HMG-CoA reductase.

This liver enzyme overproduces cholesterol from carbs in your diet to try and make up from the little amount of cholesterol you actually eat.
This is the cause of high cholesterol in people. But unfortunately your doctors don’t tell you that. Instead they put you on a statin drug, which is used to lower cholesterol by inhibiting HMG-CoA reductase. So it’s not even fixing the cause of your high cholesterol, (which by the way can only be fixed through diet by increasing your cholesterol intake from animal based fats) it’s just covering up the symptoms.

What about good cholesterol vs. bad?

Don’t worry about HDL or LDL, “the levels of good cholesterol versus bad cholesterol reflect only transport mechanisms for healthy cholesterol and are inherently meaningless measures of the risk of coronary heart disease.” (Gedgaudas 80)

The only thing you do need to worry about is having LDL that has oxidized in the blood stream, and according to Michael McEvoy (https://metabolichealing.com) this can happen from having a diet high in processed foods, alcohol and refined sugars.

So avoid that shit, increase your animal based fat intake like butter, whole eggs, grass fed steak, bacon etc. and enjoy your new found health.

Good Sources Of Dietary Fats

Like I mentioned earlier in this chapter, we only want the best of the best when it comes to fat.

The majority of foods out there contain fat that is un-natural to the human body (i.e. Trans fats).

If we want all the benefits that fat has to offer then we must get it from sources that have been around since the beginning of time.

These sources can include;

- Any fat that comes from quality meats and fish
- Pastured Butter
- Whole eggs
- Nuts and seeds
Power Athlete Nutrition

- Fish oil
- Avocados
- Coconut oil

These are the types of foods you want to eat on the regular. Whole and natural sources are a top priority from now on.

Try your best to avoid processed foods and you’ll be on your way to becoming an unstoppable, elite athlete.
Chapter 2: Micronutrients

To be honest with you, for the longest time I neglected this vital element of nutrition.

I understand that when you’re an athlete with a goal in mind to become the strongest, fastest, most explosive player on your team, micronutrients just aren’t a priority.

Vitamins and minerals seem like such a minuscule substance when you’re young and hungry to be the best, but rest assure that it plays a much larger role than what you know.

Remember, that little details shouldn’t be overlooked, as they can make huge changes in the grand scheme of things.

In this chapter you’re going to find out what I’ve been neglecting for all these years and how you can learn from my mistakes.

So for anyone that’s not familiar with what micronutrients are, they include vitamins, which are organic compounds, and minerals which are inorganic elements that exist as solids.

Basically, substances that exist outside of us, which makes it important to add into our diets because our bodies can’t produce them.

This means if you’re not consistently eating foods with these important substrates, you’re leaving out a big part of what helps the body produce energy.

If your body isn’t producing energy as efficiently as possible, you’re losing out on performance.

To get one thing straight, micronutrients aren’t direct sources of energy but rather, they facilitate in energy production and the utilization of carbohydrates, fats, and proteins.

They also transport oxygen and carbon dioxide, regulate fluid balance, and protect against oxidative damage.

So as you can see, these small micronutrients play a vital role in the way your body uses big picture compounds like protein, carbs, fats, oxygen, and pretty much anything that your body needs to break down.

Now, being an athlete means that you have to take these “unimportant” elements more seriously than your Average Joe.

All of those grueling workouts and practices increase the turn over and loss of these micronutrients.
As a result, a greater intake of micronutrients will be required to cover the increased needs for building, repairing, and maintaining of your muscle tissue.

On a side note: Any athlete that restricts energy intake (eats in a caloric deficit) and those who eliminate one or more of the food groups from their diet (i.e. low carb, low fat) will be at a greater risk of poor micronutrient status.

Most athletes will have a deficiency in one or more of the vitamins and minerals.

Some may be different than others depending on the quality of foods you eat, the quantity of foods you eat, and the type of foods you eat.

The most common deficiencies in athletes are:

- Calcium
- Vitamin D
- B Vitamins
- Iron
- Zinc
- Magnesium
- Antioxidants; such as Vitamin C and E, B-Carotene, and Selenium

And these deficiencies can take a toll on the body if not taken care of.

For example;

Calcium deficiency can increase your risk of developing diseases like osteoporosis, osteopenia, and calcium deficiency disease (hypocalcemia).

Vitamin D deficiency can increase your chance of heart disease, weak bones (vitamin D plays a role in calcium absorption), autoimmune disease, and low hormone production.

Zinc deficiency can cause poor neurological function, weaken your immune system, and even cause a low sex drive.

Magnesium deficiency can increase muscle cramps, fatigue, anxiety, and poor memory.
Can I Take A Multivitamin

Listen, I’ve heard the argument from both sides of the coin.

Multivitamins are good vs. Multivitamins are shit.

My stance is simple.

I rather get my micronutrients from natural sources, rather than synthetic vitamins that the body doesn’t recognize.

To be real with you, you probably excrete most of the vitamins and minerals you get from a multivitamin supplement.

So what to do?

How To Guarantee You Get Adequate Amounts Of Micronutrients

It was only a few years ago when I learned the importance of making sure I was eating an adequate amount of micronutrients.

I found out I was deficient in vitamins and minerals after a routine checkup at the doctors.

There was a period of time where I felt like shit.

I was always tired, I felt lethargic, and I wasn’t recovering properly from my training.

I thought I’d hit a plateau.

I thought I needed to work harder to break past the wall I’d hit.

Little did I know that visit to the doctor was going to change my perspective on micronutrients forever.

After receiving my results from the blood work, I knew I needed to make a drastic change.

I was deficient in almost all of the vitamins I mentioned above.

This experience lit a fire under my ass and I became serious about getting my health back in check.

So what I did was increase my veggie intake 10 fold.
I had green veggies like; spinach, broccoli, and kale with every meal PLUS a scoop of my favorite greens supplement 2 times a day.

I did this for a few weeks and busted through that wall; my training has never been the same.

I have way more energy than ever before and I rarely get sick during the winter months.

So learn from me; make sure you’re getting your daily requirements of veggies plus some.

You’re an athlete and your body is your Ferrari.

Take care of it.
Chapter 3: Overall Health

There are lots of people in this world that attempt to live a healthy lifestyle.

They sleep 8 hours a day

Go to the gym four times a week

And partake in activities that help them alleviate stress.

All these things DO play a huge role in a healthy life, but one of the most important aspects of a healthy body is the quality of the foods you consume.

Living in today’s society, it’s very hard to find high quality foods on a regular basis.

There’s genetically modified produce, cows and chickens being fed unspeakable concoctions, and sugar in 80% of all the food we eat.

Going to the corner store for a healthy snack is a thing of the past.

In this chapter I’ll be going over what foods I believe to be high quality and share the foods I eat on a regular basis to look, feel, and perform my best.

Organic Produce

Back in the day before agriculture exploded in the U.S., most of the families in this country had a small garden or lived near someone who grew their own crops.

These small time farms made it easy for anyone to get their hands on fruits and vegetables that were grown properly.

Meaning grown in soil with high amounts of carbon, nitrogen, phosphorus, potassium, calcium, magnesium, and sulfur.

Fast forward 100 years and we live in an age where we have no idea where our fruits and veggies are coming from.

Big corporations have taken over the way our crops are being grown and it’s getting harder and harder for the consumer to find foods that are grown the proper way.

It’s been my conviction that in order to live a healthier life and truly get the nutrients from the produce we eat we need to buy organic, or from our local farmers at the weekly farmer’s market.
The Reason

Most of the fruits and veggies you’ll see at your local supermarket have either traveled thousands of miles to get to the shelves or have been contaminated with some form of pesticide.

Pesticides are poisons developed to kill insects and keep them from swarming and eating the crops.

Another method that has been created to harvest faster crops and avoid any failed ones are GMO crops.

GMOs (genetically modified organisms) are another issue when it comes to normal supermarket produce.

GMOs were developed to have crops grow quicker, at a more successful rate, and under different conditions.

A lot of farms use a chemical called Round up which is designed to kill weeds that grow alongside their crops.

The problem is, this chemical would kill the crop under normal circumstances.

However, scientists have engineered seeds designed to withstand Round Up.

This allows farmers to kill the weeds that would normally destroy the crops, without doing any harm to the crop itself.

This makes it easier for farms to harvest and supply more food for us.

But there’s a serious question to be asked... Does eating this genetically modified food have a negative effect on our health?

For a long time, the argument has been that we can easily wash these pesticides off from our foods, but I disagree.

When we put something onto our skin, it is absorbed into our bodies.

Plants are the same way, when something touches the surface of the plant, it is absorbed.

Even though it may be possible to wash off the pesticides from our produce, they have already been absorbed by the plant.

This means that when we eat the plant, we ingest the chemicals as well.

If these chemicals kill weeds, just think about what they’re doing to the inside of our bodies!
According to Dr. Mercola it includes;

- Disruption of the biosynthesis of aromatic amino acids (these are essential amino acids not produced in your body that must be supplied via your diet).
- Gut dysbiosis (imbalances in gut bacteria, inflammation, leaky gut and food allergies such as gluten intolerance).
- Creation of ammonia (a byproduct created when certain microbes break down glyphosate), which can lead to brain inflammation associated with autism and Alzheimer's disease.

This will make you think twice when selecting your produce.

For the highest quality produce you should always buy organic or from a farmer’s market.

Nine times out of ten, the stuff on the shelves is harmful to your body and less nutrient-rich than the stuff at the farmer’s market.

Pasture Raised Meats/Wild Caught Fish

I bet this is something that you probably don’t think about when you go to the grocery store.

Meat’s just meat right?

Wrong.

There are two categories of meat that you usually see at your local supermarket.

- Pasture raised meats > Grain fed meats
- Wild caught fish > Farm raised fish

The way the animals are raised play a HUGE role on the quality of the meats.

Animals that are grain fed are put into cruel, disgusting conditions.

They’re crammed into factories and rarely, if ever, see the light of day.

Not only is this uncomfortable for the animal, but they’re not moving at all, meaning they’re accumulating ridiculous amounts of fat.

Oh, and remember those nasty GMOs we were talking about before?
The animals are fed grain and soy filled with GMOs to make them fatter and meatier.

Farmers want the most bang for their buck, so they get their livestock as big as they can because the more meat, the more money.

Not only does the lack of a proper diet make the animals sick and unhealthy, but the living conditions make the lives of the animals stressful and miserable.

Just like humans, when animals are put under constant stress, their health is going to deteriorate.

Pasture raised meats, on the other hand, allow the animals to live a more natural life. They’re free to roam the land and have a diet of grass; the preferred food for cows.

Grass Vs. Grain

You see, there are two different types of food cows are fed, and depending on which one will determine if the meat is high quality or low quality

When a cow is fed grain, the omega 3 fatty acid, an essential fat that your body can only get from the foods you eat, is substantially decreased.

Why does this matter?

Well, there’s a ratio of Omega 3 fatty acids to Omega 6 fatty acids that we want to balance in order to maintain a healthier body.

According to this study (https://www.ncbi.nlm.nih.gov/pubmed/12442909); several sources of information suggest that humans evolved on a diet with a ratio of Omega 6 to Omega 3 essential fatty acids (EFA) of approximately 1 to 1, where as in western diets the ratio is 15/1 - 16.7/1.

This means that the western diet of processed and low quality foods has created a deficiency in Omega 3 fatty acids and an excess of Omega 6 fatty acids.

This type of ratio between omega fatty acids promote the pathogenesis of many diseases, including cardiovascular disease, cancer, and inflammatory and autoimmune diseases.

So as you can see, eating a diet that consists of a ratio favoring Omega-6 EFA leads to an unhealthy environment in your body.

Grain fed animals lack the Omega 3 fatty acids to maintain a proper ratio of fats, which harms the body rather than helps it.
The same problem occurs with farm raised fish. These fish live in an overcrowded pool of water under similar conditions to those of the grain fed cows.

And according to Mike Geary and Catherine Ebeling; farm raised fish have a higher fat content because of the type of activities the fish partake in.

These actives consist of... nothing.

These fish don’t spend their lives swimming freely through the cold ocean water or leaping up a rocky stream like wild fish.

They spend their entire lives crammed in a small pool of water swimming in circles, eating their genetically modified corn and soy.

Oh, not only that, but they also eat the fecal matter of the other fish. Does that sound appetizing?

And even though the farm raised fish are much fatter than the wild caught fish, they are still deficient in Omega 3 fatty acids when compared to wild caught fish.

Despite being much fatter than wild fish, farmed fish provide less beneficial omega-3 fats and more omega-6.

Remember that ratio, 1:1.

As you can see, eating any animals that have been taken from their natural environment and placed into conditions created by humans plays a huge role in the quality of the nutrients that we receive from these animals.

If you want to perform and feel your best, have endless amounts of energy, and recover properly from your training sessions, then I highly recommend changing your meat and fish from factory raised, to wild and free.

And I don’t want to hear any excuses.

I started buying organic and pasture raised meats when I was 16 years old.

I got my first job at Target as a cashier and used that money to buy foods that would help me on my journey to a healthier and better athlete.

I know that if you’re 100% dedicated to your goal of becoming great, you’ll prioritize the way you use your money.

You know how the saying goes, “if you want to see someone’s priorities in life, check their bank statement.” It’ll tell you everything.
Okay, we’re about to dive into some scientific stuff here, but stick with me.

There’s a reason you need to know how your body produces energy for the activities you partake in.

It doesn’t matter if you’re running 20 miles or attempting to back squat your one rep max.

There’s only one thing that allows you to execute these actions, and that is ATP.

Adenosine Triphosphate.

This chemical compound is responsible for all the activity your body does, voluntary or involuntary.

ATP is made up of one adenosine and three phosphates. The process that occurs when your body uses ATP as energy is called hydrolysis.

Water is combined with ATP, this reaction splits the last phosphate away from the molecular structure of ATP.

When the last phosphate is split away, this separation releases energy, and this is the process that happens every time you need to contract a muscle.

The cool but also not so cool thing about the human body is that it can ONLY use ATP for the creation of energy.

So once your body goes through hydrolysis and splits that last phosphate away, the ATP molecule becomes ADP; Adenosine Diphosphate.

And the body can’t use ADP to create more energy. So what does it do?
The body has 3 Energy Systems that work around the clock to create more ATP using four sources, which come from the foods you eat.

- Creatine Phosphate
- Fat
- Carbohydrates
- Protein

Creatine Phosphate

This is exactly what you think it is.

It's that powder stuff that all the bodybuilders use.

What you probably didn’t know is that creatine can also be found in the meats you eat, mostly red meat.

Unfortunately the amount of creatine phosphate found in meat isn’t sufficient enough to cause any big changes that creatine powder is famous for.

Creatine Phosphate is the body’s first source for more energy (more ATP) and the body does a great job of making sure we have enough creatine readily available for ATP production.

It is estimated that there’s only about 100g of ATP and about 120g of creatine stored in the body. (1)

This amount of creatine can produce enough ATP to sustain 3-15 seconds of intense activity. (1)

Carbohydrates

Everyone and their mom knows that carbohydrates supply energy to the body, but most aren’t aware how this happens, I’ll go over it later in the book.

For now, all you need to know is that when you ingest carbs your body converts them into glucose. This conversion is called Glucogenesis.

Glucose is then used to create ATP in the Glycolytic Energy System.
Any glucose that isn’t used is converted to Glycogen and stored in your muscles and liver. This is a good thing because carbs can release energy much faster than fat. Since carbohydrates release energy faster than fat, it makes it a primary source of energy for quick bursts of activities.

Fat

Fat is most commonly stored in adipose tissue throughout the human body. The main purpose of fat is to be an energy reservoir for times when food isn’t available. Obviously this causes problems today, as there is an abundance of food. But even though fat does act as a stockpile of fuel, energy release is too slow for the intense activities that power athletes go through.

Protein

This is last on the list for a reason. Protein is the last source of fuel that the body will use to create ATP. It usually becomes a source during prolonged activities but must go through a process called Gluconeogenesis. This is the conversion of Amino Acids into Glucose. Now that we understand where the sources of our energy come from, let’s go into the systems that the human body goes through in order to use these sources and create Adenosine Triphosphate.
The Energy Systems

There are three energy systems that the body goes through to produce ATP.

There’s a sequential order of these systems and they go as follow.

- ATP-PCr System
- The Glycolytic System
- The Oxidative System

ATP-PCr System

This first energy system is completely made up by ATP and Creatine Phosphate.

The fastest production of ATP occurs here making it the first energy system to activate during intense activity.

Phosphocreatine, also known as Creatine Phosphate, is broken down by an enzyme called Creatine Kinase.

By breaking down Creatine Phosphate we release a phosphate that can be used to rebuild ADP into ATP.

Remember, ADP is the molecule that’s left after the body uses an ATP to produce energy.

The process of using this phosphate to create ATP is called phosphorylation, and this system can run with or without oxygen unlike other systems.

This is a good thing, because there’s not much oxygen flowing through our bodies the first couple of seconds of intense activity, like squatting our 1 rep max or running an all-out sprint.

The ATP-PCr system operates during the first 5-8 seconds of activity (1).

This means our bodies use up the stored ATP in the first few seconds and then automatically start breaking down Creatine (PCr) to begin the process of phosphorylation.

When the first energy system has done its job and you’re still performing your activity, the body begins to use the second energy system.
The Glycolytic System

This system consists of a series of enzymatic reactions that use the glucose or glycogen (after converting back to glucose) in our bodies to create more ATP and sustain longer activity.

The end product of Glycolysis is pyruvic acid and it can be used in two different ways.

It can either be funneled through a process called the Krebs Cycle (Oxidative System) or converted into lactic acid.

And depending on which way the pyruvic acid decided to go will determine whether Fast Glycolysis or Slow Glycolysis is taking over.

Fast Glycolysis occurs if pyruvic acid is converted into lactate, and the energy demands of the body are high, needing faster production of ATP (think sprinting 100 yards).

Slow Glycolysis occurs if pyruvic acid is funneled through the Krebs Cycle and the energy demands of the body are less demanding (think jogging), needing a slower production of ATP.

According to the authors of Exercise Physiology: Nutrition, Energy, and Human Performance (2), the contribution of the fast glycolytic system increases rapidly after the initial 10 second of activity.

This also coincides with the drop in maximal power output as the immediate available phosphogens, ATP, and PCr, begin to run out.

After about 30 seconds of sustained activity, the major source of energy production comes from Fast Glycolysis.

At 45 seconds of consistent activity there is a second decline in power output and any activity past this point is taken over by...
The Oxidative System

The Oxidative System has 4 processes that can produce ATP.

The first being...

Slow Glycolysis

This process has the same series of reactions as Fast Glycolysis, the only difference is that pyruvic acid is converted into Acetyl Coenzyme A.

And further ATP production can happen by funneling Acetyl Coenzyme A through the Krebs Cycle.

Krebs Cycle

This cycle consists of a complex series of chemical reactions that continues the oxidation of glucose that was started in the Glycolytic System.

When Acetyl Coenzyme A enters the Krebs Cycle it starts to break this chemical compound down into carbon dioxide and hydrogen.

Left unchecked, the hydrogen produced in the Krebs Cycle and Glycolysis would cause the cells to become too acidic. (2)

So what the body does to offset this acidity is combine hydrogen with two enzymes called NAD and FAD.

Once combined the body transports them to the...

Electron Transport Chain

In this process the body goes through another series of chemical reactions and combines the hydrogen with oxygen to form water, which prevents the acidification.

This reaction, which requires oxygen, produces 34 ATP, making it the process that produces the most energy.
What About Fat? Can Fat Be Used To Produce ATP?

The answer is yes.

This process is called Beta Oxidation.

This is where lipolysis (the breakdown of fat) occurs and is broken down into its most basic form; Glycerol and Free Fatty Acid.

Now, before free fatty acids can enter the Krebs Cycle they must first be reduced to Acetyl-Coenzyme A and hydrogen through the process, Beta Oxidation.

Once converted into Acetyl Coenzyme A the body can now funnel it through the Krebs Cycle.

Fuel for Performance (Nutrient Timing)

The way you combine certain foods at specific times of the day plays a huge role in how your body uses the calories from those foods as energy.

Being an athlete, especially a student athlete, has its disadvantages when it comes to timing your nutrients.

You don’t have the freedom or time to make freshly cooked meals while still attending classes, practices, and workouts.

So what should you do?

You gotta work with what you have.

Like most high school and college students, you probably wait until the last minute to get up for your day.

This doesn’t leave a lot of time to have a filling and healthy breakfast.

If this sounds like you, I recommend adding a scoop or two of protein powder in your shaker bottle before going to bed.

This way when you wake up with only 10 minutes until class starts, you can grab your shaker bottle and go.

I also recommend eating a tablespoon of coconut oil first thing in the morning.
Power Athlete Nutrition

The MCT’s (Medium Chain Triglycerides) in coconut oil will convert readily into ketones, which are shown to boost brain function.

This is important if you have a busy morning at work or in class.

Not only will MCT’s help your morning fogginess, it’ll also facilitate fatty acid oxidation, or the body’s process of using fat for energy.

After about 2-3 hours after waking up, you’ll probably be hungry again.

This would be a perfect time to add some water to your protein shake and drink it up.

Just three hours into your day and you’ve already had a high quality serving of fats and protein.

That’s a solid day so far.

Now depending on what you have available, your next meal should be solid, meaning it should consist of wholesome foods, none of that processed junk.

I have a friend who played college ball. I recommended he hard boil two dozen eggs every Sunday in preparation for the week.

For his first wholesome meal of the day, he would have 4-5 eggs with a serving of oatmeal.

This held him over until after practice or training.

Then comes the REAL food.

His first meal after an intense training session was small, but fast digesting and absorbing (i.e. white rice and sardines, protein shake, etc.)

This guaranteed he utilizes the nutrients of amino acids and glucose fully and replenish his muscles within 30-60 minutes after training.

If he ate a huge meal directly after his workout, his body probably wouldn’t deliver the nutrients until hours after training.

Faster digesting foods are better, especially after training.

Now, your last meal should always be your biggest. You’re about to go to sleep and won’t have any nutrients in your system for the next 8-10 hours.

You want to make sure you eat a big meal so your body has nutrients being delivered throughout the night.
Why Eat This Way?

Two reasons.

The Autonomic Cycle of the Nervous System and Metabolic Flexibility.

The main reason I always recommend, not just to athletes but everyone, to eat the way I explained above is because it’s more in tune with your autonomic nervous system.

Let me explain.

Your autonomic nervous system (ANS) has two divisions.

The Sympathetic Nervous System (SPS), which is responsible for being alert and ready for anything.

This division is responsible for your fight or flight response.

By fasting or eating small meals of protein and fats, you force your body to utilize the sympathetic nervous system for a longer period of time.

This can benefit you greatly if you have a job or a class where you have to be up and alert.

The opposite occurs when you’re utilizing the Parasympathetic Nervous System (PSNS).

This is activated when your body is resting, relaxing, and repairing itself.

When your body activates this system, your blood vessels dilate and blood gets sent to your digestive tract.

This allows your body to digest all the food you just ate and start repairing the muscles that you broke down that day.

How do you activate this system??

Simple.

Eat a big meal of proteins, carbs, and fats.

This is why I recommend having your biggest meal for dinner. This way you can put yourself into the PSNS and recover from a long day’s work.

The second reason I recommend eating the way I described above is to improve your metabolic flexibility.

Our goal is to optimize your body’s ability to use different types of fuel.
Power Athlete Nutrition

The human body can run on both Ketones and Glucose.

We want our bodies to be efficient at switching from one source to the other when necessary.

So for example, when you’re walking to and from class/work, sitting at your desk, or even partaking in a low intensity activity, your body should be primarily fueled by ketones (fat).

This ensures you’re saving your stored glycogen for when you need it most, during your explosive and power movements. (i.e. sprinting, jumping, squatting or deadlifting heavy, etc.)
I understand that there’s a lot of athletes out there that not only want to perform at their best, but also want to look their best.

You want to be athletic and aesthetic.

Have eighteen inch arms and that oh-so-coveted 42 inch vertical.

Six pack abs and a 4.4 second 40-yard dash time.

I’ve got you covered.

Body transformations fall under two categories.

You either want to add mass to your frame, or get lean.

For the average person this is as simple as eating in a caloric surplus or eating in a caloric deficit.

It doesn’t matter what your macronutrient breakdown is. As long as you’re eating above or below maintenance, you will either gain or lose weight.

But what about athletes? Can they follow these same rules?

NO.

Athletes require a different approach when it comes to body transformations.

Since their activity levels are way above average, they must make sure that they consume enough calories to support the activities they do throughout the day whether they’re trying to burn fat or build muscle.

This is where macronutrient breakdown becomes important in transforming an athlete’s physique while simultaneously allowing them to perform at an elite level.

I’ll show you HOW to break down YOUR macronutrients in the “Macro Breakdown PDF’s” you get with your workouts.

In this chapter, I’m going to explain the reasoning behind your strict, but effective, macronutrient breakdown.
Most of you know that calories are the most important element when it comes to transforming your body, but as an athlete you need to consume these calories in a way that aligns with your macronutrient breakdown.

If your macronutrient ratio is imbalanced, it can severely cripple your performance.

If you consume a ton of fat with very little proteins or carbohydrates, you aren’t feeding your body the proper macronutrients it needs to perform optimally.

You’ll be feeling severe amounts of fatigue and sluggishness - not good if you want to perform at an elite level.

As an athlete, you have very specific needs.

To perform at your best level you have to produce enough ATP to create the energy you need for your sport.

Since this is the case, around 40-50% of your calories should come from carbs, as glucose is responsible for the production of ATP.

You want to make sure you fully replenish your glycogen stores every night before going to bed.

It’ll guarantee your performance is never hindered.

Carbs will give you four (4) calories per gram that you eat. So if your carb requirement is 250g per day that means you’re eating 1,000 calories from carbs per day.

Protein also contains four (4) calories per gram.

Now that we know that we don’t need 300g of protein like many bodybuilders thought decades ago, we’ll be consuming about 30-40% of our calories from protein.

That’s leaves fat as the last macronutrient to be consumed to make up your daily caloric intake.

At 9 calories per gram, fat has the highest amount of calories out of all the macronutrients.

That means fat will make up 20% of our calories.

This ensures we’re getting just enough fat to support the production of hormones, cell membrane repairs, and all the other jobs that fat has in our body.

By breaking down your macronutrients in this way, you’re priming your body to perform at its best, while still repairing muscle tissue, and keeping hormone levels elevated.
Chapter 6: Supplementation

I still remember to this day how impressionable I was growing up trying to become the best athlete on my team.

I remember buying bodybuilding magazines for some motivation and always ended up buying the “latest” supplement that I saw being advertised.

Truth be told, when it comes to supplementation there’s a lot of B.S. out there in the fitness industry.

I can’t tell you how many articles I read when I was growing up that hyped up a certain supplement claiming to either burn fat, build muscle, or even gain explosive power.

These are the exact things people want to improve on and supplement companies know how to poke that pain point to get you to buy their products.

This is why the supplement industry is a multi-billion dollar market.

And today I’m here to tell you that you don’t have to spend your hard earned cash on 10 different supplements.

To be honest, there’s only a handful of supplements that I believe actually work.

And in this chapter I’m going to talk about 3 that I take and believe can actually help you on your journey to becoming a better athlete.
1. Creatine Monohydrate

There are 5 core supplements that I buy every month, and creatine monohydrate is always number one on my list.

There’s a lot of solid research that no one can dispute and if you paid attention in the Energy Systems chapter, you’d understand how taking creatine can benefit power athletes like football players, basketball players, baseball players, etc.

So now, what exactly is creatine monohydrate?

Creatine is a nitrogenous organic acid that’s produced in the liver to help supply energy to cells all over the body.

The main objective of creatine is to be stored in your muscles and liver so it can be readily available for fast and explosive muscular contractions.

For an athlete, this type of activity would most likely occur when you’re training in the gym or playing your sport.

So why would someone want to supplement with something that the body can naturally produce? Two reasons;

1. You don’t produce enough creatine to reap the benefits of enhanced performance that you would get if supplementing with it.

 When there’s large amounts of creatine readily available in your body it allows for faster production of ATP, and

2. You would have to eat a ridiculous amount of meats, eggs, and fish to get the desired amount through foods.

 And I mean, RIDICULOUS.

 You would have to consume about 3 pounds of meat to get the recommended dose of 5g of creatine a day.

 And that’s not including the loading phase that’s “recommended” by all the supplement companies.

 And I put recommended in quotes because I think the loading phase is a bunch of bullsh!t.
If you go to GNC or Vitamin Shoppe and grab any bottle of creatine off the shelves, look on the back at the instructions.

They recommend loading your body with 20 grams a day, split up into multiple servings for a duration of 7 days.

FORGET THAT.

I’m all about making life less complicated, not perplexing it with numbers and servings and time frames.

What I simply do is take 5g before training and 5g after training.

Ten total grams a day with some grape juice for faster absorption.

It’s been shown that when consuming creatine with a liquid that spikes your insulin it can lead to ergogenic (performance enhancing) effects.

(http://www.sportsci.org/traintech/creatine/rbk.html)

And to tell you the truth, creatine has also been shown to add a neuro-protective and cardio-protective benefit to users.

I know there’s a lot of different forms of creatine in the market, but I recommend sticking to the most researched form; Monohydrate.

My favorite being, Microzised Creatine Monohydrate.

But what about the negative effects creatine has on the kidneys??

There are none.

If you don’t have a preexisting kidney condition then taking creatine will most likely not affect you in any negative way.

According to a study done to see the side effects of regular creatine consumption (https://www.ncbi.nlm.nih.gov/pubmed/19124889), kidneys maintained their functionality in healthy subjects who supplemented with creatine, even for several months.

So make sure, if you’re an athlete that’s looking to increase his power output and add some mass along the way, start supplementing with creatine.
2. Protein Powder

Just like creatine, protein powders comes in all different forms.

From plant based to meat based.

All of these different types of protein powders have been marketed to be better than the next, but keep reading and you’ll discover the truth.

There’s only one type of protein powder I would recommend, and that’s because it’s been around the longest and has been used by elite athletes for decades.

Whey Protein

This type of protein has been around for years.

I remember once going to GNC with my mom and having her ask the store clerk if there were steroids in the protein powder.

Embarrassing...

Anyways, what she didn’t know was that whey is derived from milk.

It’s the by-product of making cheese.

It’s really high in BCAA’s and glutamic acid, which are amino acids, the building blocks of protein.

And to put whey protein up on a pedestal, whey is one of the most fast absorbing proteins you can consume.

So taking it right after working out would be the most sensible thing to do because you want to start the rebuilding process as fast as possible.

But you can’t consume just any whey.

There are 3 different types of whey out there and specific ones give you more bang for your buck.

Surprisingly, the only thing that splits whey into 3 different types is the way it was processed. (http://journals.lww.com/nsca-scj/Abstract/2009/02000/The_Post_Workout_Protein_Puzzle_Which_Protein.4.aspx)

Whey Protein Concentrate is the least processed but unfortunately it provides the least amount of protein.
Whey Protein Isolate is my favorite.

This protein is processed more to increase the amount of protein and remove impurities making it pure protein, about 90-94% protein.

And since it’s so pure, meaning less fat and lactose; the body can break it down faster which means faster absorption.

The final type of whey protein Hydrolyzed Whey Protein

This type is the most processed of them all. It’s actually predigested by enzymes which means your body’s only job is to get that shit into your blood stream and into your muscles.

Unfortunately there’s a catch.

The amount of amino acids that rush into the blood stream after consuming hydrolyzed whey can have some repercussions.

According to G Damon Wells (http://journals.lww.com/nsca-scj/Abstract/2009/02000/The_Post_Workout_Protein_Puzzle_Which_Protein.4.aspx), research suggests that when amino acids flood the blood stream too quickly, the muscles cannot use them fast enough.

The result is that they can be stored as fat.

Personally I’ve never tried hydrolyzed whey; I’ve heard some people like it, while others think it’s not worth the extra money.

Call me old fashioned, but I’d rather let my body do its job and digest whey protein isolates.

This way there’s a steady stream of amino acids instead of a sudden rush that may lead to fat stores.

Whey protein isolate is always on my list.

Remember, make sure a large portion of your protein intake comes from real, whole foods.

You want to supplement with protein powder, not make it your main protein source.
3. Fish Oil

I’ve only been taking fish oil for about 2 years now.

Growing up I was never too keen on the taste that came up after a fishy burp.

But now that I’m older and realize the benefits that fish oil comes with, I’ve learned to deal with the fishy taste.

Fish oil has some of the biggest advantages for any athlete, or average person, for that matter.

If you recall in Chapter 3, on the ratio of Omega-3 to Omega-6 fatty acid, you’ll remember that this ratio is very important for overall health.

Most people consume way too much Omega-6 fatty acid and not enough Omega-3 fatty acid, which brings on inflammation and possibly disease.

By supplementing with fish oil you help combat this ratio.

Fish oils are filled with Omega-3 fatty acids, which is a good thing because this type of fatty acid is an essential one.

This means our bodies can’t produce Omega-3 fatty acids, so we must get it through our diet or supplementation.

Besides helping to fight inflammation, fish oil can greatly help athletes in their athletic performance.

There was a study done that showed fish oil can help increase protein synthesis and produce an anabolic effect after exercise. (https://www.ncbi.nlm.nih.gov/pubmed/23434906)

I found this to be a big surprise, but after supplementing with it for a while I was definitely able to feel the effects.

Recovery has never been this fast.

And it definitely helps that I don’t get sore anymore either. Fish oil helps reduce the pain (https://www.ncbi.nlm.nih.gov/pubmed/19451765) associated with DOMS or Delayed Onset Muscle Soreness.

This allows me to go hard in every training session.

You know the saying, “No Days Off.”

Well fish oil definitely helps you achieve that.
Bonus

The supplements I discussed above, I take for athletic/aesthetic purposes.

They help me build lean muscle mass and stay lean year round.

But there are 2 other supplements that I take for my health.

I whole heartedly believe that health stems from your digestive system.

If you have a healthy digestive system, you have a healthy body.

There a number of things I do to make sure I keep mine up to par. The obvious one is making sure my food intake is coming from high quality sources.

The not so obvious one is supplementing with enzymes and probiotics.

These two supplements help with the breakdown of food.

One of the worst things the body can do is not fully process the foods you eat and excrete them whole.

This is where supplementing with enzymes and probiotics comes into play.

They ensure that my body is processing and using most of what I eat during the day.

They also helps with recovery and making sure my digestive tract is running smoothly.

Homemade Supplements

Now, if you noticed, I didn’t touch on pre-workout supplements at all in the section above.

That’s because they’re a waste.

They provide nothing but a rush of energy during your workout, and a crash afterwards.

I’ve only taken pre workout once or twice in my life, and every time it’s great, but not in the long run.

Frequent intake of pre-workouts supplements can lead to digestive problems and adrenal fatigue from all the stimulants in the proprietary blended pre-workout.

That’s why I’ve always made my own blends anytime I wanted to take a pre-workout drink.

It’s simple and cheap.
I would buy the raw ingredients and mix it up in a shaker bottle right before my workouts. Below I’ll give you a couple of recipes that I used to use.

*P.s. I don’t mix my own pre-workouts anymore. I stick to black coffee as my pre-workout drink. Gives me the energy I need without all the added stuff.

Pre-Workout - (Drink 30 Minutes Before Training)
- 1/2 pack of sugar free Kool-Aid (or any other mix)
- 2-4g of L-Arginine
- 2-3g of Beta-Alanine
- 5g of Micronized Creatine Monohydrate
- 100mg of Caffeine
- Dash of stevia for sweetness

Intra-Workout Drink - (Drink During Your Training)
- 1/2 pack of sugar free Kool-Aid (or any other mix)
- 5g of BCAA (Branch Chain Amino Acid)
- Dash of stevia for sweetness

Post Workout Drink - (Drink Right After Training)
- 1-2 scoops of whey protein powder
- 1 Banana
- 1 cup frozen strawberries
- 5g of Micronized Creatine Monohydrate
- 2-5g of L-Leucine
- 1/4 TBSP of cinnamon
Here we will break down exactly what meals you will be consuming should look like throughout the day.

Try to find the weight that is nearest yours. You can then round up or down depending whether you wish to gain or lose but remember to consider the sections on weight gain and weight loss.

Note these are examples of foods you can consume. As athletes we take into account that you will be pressed for time and sometimes need to eat “alternatives” which we displayed for you. However, here is the breakdown of what your daily meals should look like.

<table>
<thead>
<tr>
<th>Meal 1</th>
<th>Immediately upon waking</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Fat</td>
<td>Choose a high quality fat source to start your morning</td>
</tr>
<tr>
<td>Meal 2</td>
<td>Breakfast</td>
</tr>
<tr>
<td>High Protein</td>
<td>Choose a high protein; low carb food</td>
</tr>
<tr>
<td>Meal 3</td>
<td>Lunch</td>
</tr>
<tr>
<td>Protein & Fat</td>
<td>Choose a low carb food with a balance of protein and fat</td>
</tr>
<tr>
<td>Meal 4</td>
<td>Pre-Workout</td>
</tr>
<tr>
<td>Protein & Carbs</td>
<td>Choose protein and carb meal with a 50/50 balance</td>
</tr>
<tr>
<td>Meal 5</td>
<td>Post-Workout</td>
</tr>
<tr>
<td>Protein & Carbs</td>
<td>You can go a bit higher in carbs this meal</td>
</tr>
<tr>
<td>Meal 6</td>
<td>Dinner</td>
</tr>
<tr>
<td>Protein & Carbs</td>
<td>40/60 balance protein to carbs</td>
</tr>
<tr>
<td>Morning</td>
<td>Breakfast</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Coconut Oil</td>
<td>Whey</td>
</tr>
<tr>
<td>Almonds</td>
<td>Beef Jerky</td>
</tr>
<tr>
<td>Macadamia Nuts</td>
<td>Mozzarella Sticks</td>
</tr>
<tr>
<td>Hazelnuts</td>
<td>Sliced Cheese</td>
</tr>
<tr>
<td>Cashews</td>
<td>Deli Meat</td>
</tr>
<tr>
<td>Peanuts</td>
<td>Chicken</td>
</tr>
<tr>
<td>Peanut Butter</td>
<td>Tuna</td>
</tr>
<tr>
<td>Sunflower Seeds</td>
<td>Greek Yogurt</td>
</tr>
<tr>
<td>Pumpkin Seeds</td>
<td>Cottage Cheese</td>
</tr>
<tr>
<td>Coconut Butter</td>
<td>Egg Whites</td>
</tr>
<tr>
<td>Coffee with Cream ONLY</td>
<td></td>
</tr>
<tr>
<td>Brazil Nuts</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pre-Workout</th>
<th>Post-Workout</th>
<th>Dinner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eggs and Oatmeal</td>
<td>Whey and Vitargo</td>
<td>Chicken and Rice</td>
</tr>
<tr>
<td>Whey and Oatmeal Shake</td>
<td>Whey and Banana Shake</td>
<td>Chicken and Potatoes</td>
</tr>
<tr>
<td>Jerky and Twizzlers</td>
<td>Ostrim and Jelly Belly</td>
<td>Subway Sandwich</td>
</tr>
<tr>
<td>Quest Protein Bar</td>
<td>Quest Protein Bar</td>
<td>Chicken and Top Ramen</td>
</tr>
<tr>
<td>Greek Yogurt and Fruit</td>
<td>Deli Meat Sandwich</td>
<td>Deli Meat Sandwich</td>
</tr>
<tr>
<td>Deli Meat and Apple</td>
<td>Tuna and Gatorade</td>
<td>Fish and Veggies</td>
</tr>
<tr>
<td>Cottage Cheese and Fruit</td>
<td>Meat and Potatoes</td>
<td>Lean Beef and Fruit</td>
</tr>
<tr>
<td>Chicken and Veggies</td>
<td>Beef Tacos</td>
<td>Pork and Beans</td>
</tr>
<tr>
<td>Cheese and Grapes</td>
<td>Grilled Chicken Sandwich</td>
<td></td>
</tr>
<tr>
<td>Quantity</td>
<td>Food</td>
<td>Calories</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Meal 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5 TBSP</td>
<td>Coconut Oil</td>
<td>130</td>
</tr>
<tr>
<td>Meal 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Scoop</td>
<td>Whey</td>
<td>120</td>
</tr>
<tr>
<td>Meal 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Eggs</td>
<td>210</td>
</tr>
<tr>
<td>Meal 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 can</td>
<td>Sardines</td>
<td>130</td>
</tr>
<tr>
<td>20oz Bottle</td>
<td>Gatorade</td>
<td>130</td>
</tr>
<tr>
<td>Meal 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Scoop</td>
<td>Whey</td>
<td>120</td>
</tr>
<tr>
<td>100g</td>
<td>Small Banana</td>
<td>90</td>
</tr>
<tr>
<td>5oz</td>
<td>Frozen Strawberries</td>
<td>70</td>
</tr>
<tr>
<td>Meal 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5oz</td>
<td>Chicken Breast</td>
<td>156</td>
</tr>
<tr>
<td>1/2 cup (un-cooked)</td>
<td>Jasmine Rice</td>
<td>320</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1,512</td>
</tr>
<tr>
<td>Quantity</td>
<td>Food</td>
<td>Calories</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Meal 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5 TBSP</td>
<td>Coconut Oil</td>
<td>130</td>
</tr>
<tr>
<td>Meal 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Scoop</td>
<td>Whey</td>
<td>120</td>
</tr>
<tr>
<td>Meal 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Eggs</td>
<td>210</td>
</tr>
<tr>
<td>Meal 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2oz</td>
<td>Beef Jerky</td>
<td>160</td>
</tr>
<tr>
<td>20oz Bottle</td>
<td>Gatorade</td>
<td>130</td>
</tr>
<tr>
<td>Meal 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Scoop</td>
<td>Whey</td>
<td>120</td>
</tr>
<tr>
<td>200g</td>
<td>Banana</td>
<td>180</td>
</tr>
<tr>
<td>1.5 cups</td>
<td>Frozen Strawberries</td>
<td>70</td>
</tr>
<tr>
<td>1 cup</td>
<td>Oatmeal</td>
<td>340</td>
</tr>
<tr>
<td>20oz Bottle</td>
<td>Gatorade</td>
<td>130</td>
</tr>
<tr>
<td>Meal 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7oz</td>
<td>Chicken Breast</td>
<td>218</td>
</tr>
<tr>
<td>592g</td>
<td>Red Potatoes</td>
<td>400</td>
</tr>
<tr>
<td>1 TBSP</td>
<td>Grassfed Butter</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>Apple</td>
<td>80</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>2,525</td>
</tr>
</tbody>
</table>
Power Athlete Nutrition

175lbs Athlete (Fat Loss Focus) - 20% Body Fat

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Food</th>
<th>Calories</th>
<th>Protein</th>
<th>Carbs</th>
<th>Fat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meal 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5 TBSP</td>
<td>Coconut Oil</td>
<td>130</td>
<td>0g</td>
<td>0g</td>
<td>21g</td>
</tr>
<tr>
<td>Meal 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Scoop</td>
<td>Whey</td>
<td>120</td>
<td>25g</td>
<td>2g</td>
<td>1g</td>
</tr>
<tr>
<td>Meal 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Eggs</td>
<td>210</td>
<td>18g</td>
<td>3g</td>
<td>13g</td>
</tr>
<tr>
<td>Meal 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 can</td>
<td>Sardines</td>
<td>130</td>
<td>17g</td>
<td>0g</td>
<td>7g</td>
</tr>
<tr>
<td>1/2 cup (un-cooked)</td>
<td>Jasmine Rice</td>
<td>320</td>
<td>6g</td>
<td>70g</td>
<td>0g</td>
</tr>
<tr>
<td>Meal 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Scoop</td>
<td>Whey</td>
<td>120</td>
<td>25g</td>
<td>2g</td>
<td>1g</td>
</tr>
<tr>
<td></td>
<td>Small Banana</td>
<td>90</td>
<td>1g</td>
<td>22g</td>
<td>0g</td>
</tr>
<tr>
<td></td>
<td>Frozen Strawberries</td>
<td>70</td>
<td>1g</td>
<td>16g</td>
<td>0g</td>
</tr>
<tr>
<td>Meal 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5oz</td>
<td>Turkey Breast</td>
<td>150</td>
<td>35g</td>
<td>0g</td>
<td>1.2g</td>
</tr>
<tr>
<td>333g</td>
<td>Red Potatoes</td>
<td>225</td>
<td>9g</td>
<td>58g</td>
<td>0g</td>
</tr>
<tr>
<td>1 TBSP</td>
<td>Grass-fed Butter</td>
<td>100</td>
<td>0g</td>
<td>0g</td>
<td>11g</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1,764</td>
<td>140g</td>
<td>175g</td>
<td>56g</td>
</tr>
</tbody>
</table>
175lbs Athlete (Muscle Mass Focus) - 10% Body Fat

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Food</th>
<th>Calories</th>
<th>Protein</th>
<th>Carbs</th>
<th>Fat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meal 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5 TBSP</td>
<td>Coconut Oil</td>
<td>130</td>
<td>0g</td>
<td>0g</td>
<td>21g</td>
</tr>
<tr>
<td>Meal 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Scoop</td>
<td>Whey</td>
<td>120</td>
<td>25g</td>
<td>2g</td>
<td>1g</td>
</tr>
<tr>
<td>Meal 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Eggs</td>
<td>350</td>
<td>30g</td>
<td>5g</td>
<td>22g</td>
</tr>
<tr>
<td>Meal 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2oz</td>
<td>Beef Jerky</td>
<td>160</td>
<td>30g</td>
<td>6g</td>
<td>2g</td>
</tr>
<tr>
<td>1 cup</td>
<td>Oatmeal</td>
<td>340</td>
<td>12g</td>
<td>60g</td>
<td>6g</td>
</tr>
<tr>
<td>20oz Bottle</td>
<td>Gatorade</td>
<td>130</td>
<td>0g</td>
<td>35g</td>
<td>0g</td>
</tr>
<tr>
<td>Meal 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Scoop</td>
<td>Whey</td>
<td>120</td>
<td>25g</td>
<td>2g</td>
<td>1g</td>
</tr>
<tr>
<td>100g</td>
<td>Small Banana</td>
<td>90</td>
<td>1g</td>
<td>22g</td>
<td>0g</td>
</tr>
<tr>
<td>5oz</td>
<td>Frozen Strawberries</td>
<td>70</td>
<td>1g</td>
<td>16g</td>
<td>0g</td>
</tr>
<tr>
<td>20oz Bottle</td>
<td>Gatorade</td>
<td>130</td>
<td>0g</td>
<td>35g</td>
<td>0g</td>
</tr>
<tr>
<td>Meal 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8oz</td>
<td>Sirloin Steak</td>
<td>300</td>
<td>48g</td>
<td>0g</td>
<td>10g</td>
</tr>
<tr>
<td>1 cup (un-cooked)</td>
<td>Jasmine Rice</td>
<td>640</td>
<td>12g</td>
<td>140g</td>
<td>0g</td>
</tr>
<tr>
<td>1 TBSP</td>
<td>Grass-fed Butter</td>
<td>100</td>
<td>0g</td>
<td>0g</td>
<td>11g</td>
</tr>
<tr>
<td>1 Pint</td>
<td>Halo Top Ice Cream</td>
<td>240</td>
<td>24g</td>
<td>56g</td>
<td>8g</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>2,955</td>
<td>213g</td>
<td>384g</td>
<td>63g</td>
</tr>
</tbody>
</table>
200lbs Athlete (Fat Loss Focus) - 20% Body Fat

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Food</th>
<th>Calories</th>
<th>Protein</th>
<th>Carbs</th>
<th>Fat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meal 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5 TBSP</td>
<td>Coconut Oil</td>
<td>130</td>
<td>0g</td>
<td>0g</td>
<td>21g</td>
</tr>
<tr>
<td>Meal 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Scoop</td>
<td>Whey</td>
<td>120</td>
<td>25g</td>
<td>2g</td>
<td>1g</td>
</tr>
<tr>
<td>Meal 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Eggs</td>
<td>350</td>
<td>30g</td>
<td>5g</td>
<td>22g</td>
</tr>
<tr>
<td>Meal 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 can</td>
<td>Sardines</td>
<td>130</td>
<td>17g</td>
<td>0g</td>
<td>7g</td>
</tr>
<tr>
<td>1/2 cup (un-cooked)</td>
<td>Jasmine Rice</td>
<td>320</td>
<td>6g</td>
<td>70g</td>
<td>0g</td>
</tr>
<tr>
<td>Meal 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Scoop</td>
<td>Whey</td>
<td>120</td>
<td>25g</td>
<td>2g</td>
<td>1g</td>
</tr>
<tr>
<td>100g</td>
<td>Small Banana</td>
<td>90</td>
<td>1g</td>
<td>22g</td>
<td>0g</td>
</tr>
<tr>
<td>5oz</td>
<td>Frozen Strawberries</td>
<td>70</td>
<td>1g</td>
<td>16g</td>
<td>0g</td>
</tr>
<tr>
<td>20oz Bottle</td>
<td>Gatorade</td>
<td>130</td>
<td>0g</td>
<td>35g</td>
<td>0g</td>
</tr>
<tr>
<td>Meal 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7oz</td>
<td>Turkey Breast</td>
<td>210</td>
<td>49g</td>
<td>0g</td>
<td>1.8g</td>
</tr>
<tr>
<td>277g</td>
<td>Red Potatoes</td>
<td>188</td>
<td>7g</td>
<td>48g</td>
<td>0g</td>
</tr>
<tr>
<td>1 TBSP</td>
<td>Grass-fed Butter</td>
<td>100</td>
<td>0g</td>
<td>0g</td>
<td>11g</td>
</tr>
</tbody>
</table>

Total
2,016
160g
200g
64g
200lbs Athlete (Muscle Mass Focus) - 10% Body Fat

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Food</th>
<th>Calories</th>
<th>Protein</th>
<th>Carbs</th>
<th>Fat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meal 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5 TBSP Coconut Oil</td>
<td>130</td>
<td>0g</td>
<td>0g</td>
<td>21g</td>
</tr>
<tr>
<td>Meal 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Scoop Whey</td>
<td>120</td>
<td>25g</td>
<td>2g</td>
<td>1g</td>
</tr>
<tr>
<td>Meal 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 Eggs</td>
<td>280</td>
<td>24g</td>
<td>4g</td>
<td>18g</td>
</tr>
<tr>
<td>Meal 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2oz Beef Jerky</td>
<td>160</td>
<td>30g</td>
<td>6g</td>
<td>2g</td>
</tr>
<tr>
<td></td>
<td>1 cup Oatmeal</td>
<td>340</td>
<td>12g</td>
<td>60g</td>
<td>6g</td>
</tr>
<tr>
<td></td>
<td>20oz Bottle Gatorade</td>
<td>130</td>
<td>0g</td>
<td>35g</td>
<td>0g</td>
</tr>
<tr>
<td>Meal 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Scoop Whey</td>
<td>120</td>
<td>25g</td>
<td>2g</td>
<td>1g</td>
</tr>
<tr>
<td></td>
<td>200g Small Banana</td>
<td>180</td>
<td>2g</td>
<td>44g</td>
<td>0g</td>
</tr>
<tr>
<td></td>
<td>10oz Frozen Strawberries</td>
<td>140</td>
<td>2g</td>
<td>32g</td>
<td>0g</td>
</tr>
<tr>
<td></td>
<td>20oz Bottle Gatorade</td>
<td>130</td>
<td>0g</td>
<td>35g</td>
<td>0g</td>
</tr>
<tr>
<td>Meal 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8oz Sirloin Steak</td>
<td>300</td>
<td>48g</td>
<td>0g</td>
<td>10g</td>
</tr>
<tr>
<td></td>
<td>5oz Chicken Breast</td>
<td>156</td>
<td>32g</td>
<td>0g</td>
<td>1.4g</td>
</tr>
<tr>
<td></td>
<td>1 cup (un-cooked) Jasmine Rice</td>
<td>640</td>
<td>12g</td>
<td>140g</td>
<td>0g</td>
</tr>
<tr>
<td></td>
<td>1/2 TBSP Grass-fed Butter</td>
<td>50</td>
<td>0g</td>
<td>0g</td>
<td>5g</td>
</tr>
<tr>
<td></td>
<td>1 Pint Halo Top Ice Cream</td>
<td>240</td>
<td>24g</td>
<td>56g</td>
<td>8g</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>3,366</td>
<td>243g</td>
<td>436g</td>
<td>72g</td>
</tr>
</tbody>
</table>
250lbs Athlete (Fat Loss Focus) - 20% Body Fat

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Food</th>
<th>Calories</th>
<th>Protein</th>
<th>Carbs</th>
<th>Fat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meal 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 TBSP</td>
<td>Coconut Oil</td>
<td>260</td>
<td>0g</td>
<td>0g</td>
<td>28g</td>
</tr>
<tr>
<td>Meal 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Scoop</td>
<td>Whey</td>
<td>120</td>
<td>25g</td>
<td>2g</td>
<td>1g</td>
</tr>
<tr>
<td>Meal 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Eggs</td>
<td>350</td>
<td>30g</td>
<td>5g</td>
<td>22.5g</td>
</tr>
<tr>
<td>Meal 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2 cup</td>
<td>Oatmeal</td>
<td>170</td>
<td>6g</td>
<td>30g</td>
<td>3g</td>
</tr>
<tr>
<td>36g</td>
<td>Raisins</td>
<td>117</td>
<td>1g</td>
<td>28g</td>
<td>0g</td>
</tr>
<tr>
<td>1 Scoop</td>
<td>Whey</td>
<td>120</td>
<td>25g</td>
<td>2g</td>
<td>1g</td>
</tr>
<tr>
<td>Meal 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Scoop</td>
<td>Whey</td>
<td>120</td>
<td>25g</td>
<td>2g</td>
<td>1g</td>
</tr>
<tr>
<td>200g</td>
<td>Small Banana</td>
<td>90</td>
<td>1g</td>
<td>22g</td>
<td>0g</td>
</tr>
<tr>
<td>10oz</td>
<td>Frozen Strawberries</td>
<td>140</td>
<td>2g</td>
<td>32g</td>
<td>0g</td>
</tr>
<tr>
<td>20oz Bottle</td>
<td>Gatorade</td>
<td>130</td>
<td>0g</td>
<td>35g</td>
<td>0g</td>
</tr>
<tr>
<td>Meal 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12oz</td>
<td>Chicken Breast</td>
<td>374</td>
<td>78g</td>
<td>0g</td>
<td>3.4g</td>
</tr>
<tr>
<td>1/2 cup (un-cooked)</td>
<td>Jasmine Rice</td>
<td>320</td>
<td>6g</td>
<td>70g</td>
<td>0g</td>
</tr>
<tr>
<td>1 TBSP</td>
<td>Grass-fed Butter</td>
<td>100</td>
<td>0g</td>
<td>0g</td>
<td>11g</td>
</tr>
<tr>
<td>250g</td>
<td>Trader Joes Masala Sauce</td>
<td>180</td>
<td>4g</td>
<td>22g</td>
<td>10g</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>2,520</td>
<td>200g</td>
<td>250g</td>
<td>80g</td>
</tr>
</tbody>
</table>
Power Athlete Nutrition

250lbs Athlete (Muscle Mass Focus) - 10% Body Fat

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Food</th>
<th>Calories</th>
<th>Protein</th>
<th>Carbs</th>
<th>Fat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meal 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5 TBSP</td>
<td>Coconut Oil</td>
<td>195</td>
<td>0g</td>
<td>0g</td>
<td>21g</td>
</tr>
<tr>
<td>Meal 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Scoop</td>
<td>Whey</td>
<td>120</td>
<td>25g</td>
<td>2g</td>
<td>1g</td>
</tr>
<tr>
<td>Meal 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Eggs</td>
<td>350</td>
<td>30g</td>
<td>5g</td>
<td>22.5g</td>
</tr>
<tr>
<td>Meal 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4oz</td>
<td>Beef Jerky</td>
<td>320</td>
<td>60g</td>
<td>12g</td>
<td>4g</td>
</tr>
<tr>
<td>1.5 cup</td>
<td>Oatmeal</td>
<td>510</td>
<td>18g</td>
<td>90g</td>
<td>9g</td>
</tr>
<tr>
<td>(2) 20oz Bottle</td>
<td>Gatorade</td>
<td>260</td>
<td>0g</td>
<td>70g</td>
<td>0g</td>
</tr>
<tr>
<td>Meal 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Scoop</td>
<td>Whey</td>
<td>120</td>
<td>25g</td>
<td>2g</td>
<td>1g</td>
</tr>
<tr>
<td>200g</td>
<td>Small Banana</td>
<td>180</td>
<td>2g</td>
<td>44g</td>
<td>0g</td>
</tr>
<tr>
<td>10oz</td>
<td>Frozen Strawberries</td>
<td>142</td>
<td>4g</td>
<td>32g</td>
<td>0g</td>
</tr>
<tr>
<td>20oz Bottle</td>
<td>Gatorade</td>
<td>130</td>
<td>0g</td>
<td>35g</td>
<td>0g</td>
</tr>
<tr>
<td>Meal 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10oz</td>
<td>Sirloin Steak</td>
<td>375</td>
<td>60g</td>
<td>0g</td>
<td>12.5g</td>
</tr>
<tr>
<td>5oz</td>
<td>Chicken Breast</td>
<td>156</td>
<td>32g</td>
<td>0g</td>
<td>1.4g</td>
</tr>
<tr>
<td>1 cup (un-cooked)</td>
<td>Jasmine Rice</td>
<td>640</td>
<td>12g</td>
<td>140g</td>
<td>0g</td>
</tr>
<tr>
<td>Dessert</td>
<td>Calories</td>
<td>Carbs</td>
<td>Fat</td>
<td>Protein</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------</td>
<td>--------</td>
<td>------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>1 Pint Halo Top Ice Cream</td>
<td>240</td>
<td>24g</td>
<td>56g</td>
<td>8g</td>
<td></td>
</tr>
<tr>
<td>1 Lenny&Larry’s Cookie</td>
<td>370</td>
<td>16g</td>
<td>56g</td>
<td>8g</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4,207</td>
<td>303g</td>
<td>546g</td>
<td>90g</td>
<td></td>
</tr>
</tbody>
</table>
Closing Thoughts

I hope you were able to get a lot from this book.

These are topics and thoughts that I’ve developed through years of learning and implementation.

The human body is a mysterious and complex machine.

There’s always new and game changing studies coming out on a regular basis.

I want to be your go to expert when it comes to nutrition, especially sports related nutrition.

My promise to you is to always be up to date with the latest information out there.

I will provide the best and most practical nutrition advice you’ll ever come in contact with.

And I will help you on your journey to becoming the athlete you’ve always wanted to be.

Keep checking back to www.overtimeathletes.com for new blog posts, videos, and lessons on how you can become an Elite Athlete.

Talk soon,

Joshua Serrano